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Abstract— The nuclear electromagnetic pulse (EMP) electric 

field calculated with the legacy code CHAP is compared with the 
field given by an integral solution of Maxwell’s equations, also 
known as the Jefimenko equation, to aid our current 
understanding on the factors that affect the time dependence of 
the EMP. For a fair comparison the CHAP current density is 
used as a source in the Jefimenko equation. At first, the 
comparison is simplified by neglecting the conduction current and 
replacing the standard atmosphere with a constant density air 
slab. The simplicity of the resultant current density aids in 
determining the factors that affect the rise, peak and tail of the 
EMP electric field versus time. The three dimensional nature of 
the radiating source, i.e. sources off the line-of-sight, and the time 
dependence of the derivative of the current density with respect to 
time are found to play significant roles in shaping the EMP 
electric field time dependence. These results are found to hold 
even when the conduction current and the standard atmosphere 
are properly accounted for. Comparison of the CHAP electric 
field with the Jefimenko electric field offers a direct validation of 
the high-frequency/outgoing wave approximation. 

 

 
Index Terms—EMP radiation effects, nuclear explosions, 

Maxwell equations, radiation sources.  
 

I. INTRODUCTION 
uclear electromagnetic pulse (EMP) theory was 
developed over forty years ago by Longmire [1]-[5] and 

Karzas and Latter [6]. Their theory describes the physics of 
EMP generation and predicts the magnitude and time 
dependence of the electric and magnetic fields. Essentially, 
gamma rays from a nuclear burst interact with the atmosphere 
between the altitudes of 20 and 40 km (i.e. the EMP source 
region) to produce Compton electrons with kinetic energies of 
approximately 1 MeV. These energetic electrons are then 
accelerated in the earth’s magnetic field resulting in a 
transverse source current perpendicular to the path of the 
original gamma ray. Compton ionization of the air also 
generates the secondary electrons for a return current. The 
combination of the source and the return current produces an 
electromagnetic pulse with amplitude no larger than a few tens 
of kilovolts per meter due to saturation [2]. The amplitude of 
the pulse propagating away from the burst point can be quite 
large compared to the pulse propagating back toward the burst 
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point because the apparent movement of the source trails the 
EMP. This motivated Longmire to use the “outgoing” wave 
approximation or, equivalently, Karzas and Latter to use the 
“high frequency” approximation in their formulation.  

The physics of EMP theory is widely accepted because of 
its ability to explain the peak electric fields and the time 
dependence of the EMP. However, proper experimental 
verification of the theory has never been borne out to due to 
the end of high-altitude nuclear testing in 1962. Several EMP 
researchers have instead opted to validate the theory 
analytically. In [5], Longmire considered the EMP from a 
uniform planar source of radiating electrons. The electrons in 
the source begin radiating at the same moment in time so as to 
simulate a planar pulse of gamma rays normally incident on a 
planar layer of air molecules. Although this set-up is somewhat 
artificial, Longmire was able to rederive the same one-
dimensional planar wave equation under the outgoing/high-
frequency approximation after properly accounting for the 
path-length time delay of the signals from each electron in the 
planar source. This demonstrated that the wave equation first 
derived by Longmire does account for a spatially distributed 
source as long as the outgoing wave approximation was 
satisfied. Radasky et al. [7] used a similar approach and 
rederived the EMP wave equation utilizing the high frequency 
approximation. In the derivation process [7] correctly shows 
that the EMP electric field is proportional to the radial integral 
of the current density evaluated at the appropriate retarded 
time and along the line-of-sight1 between the nuclear explosion 
and the observer. The significance of this result is that the 
characteristics of the source along the LOS are important in 
determining the properties of the EMP at the observer2

Recently, Roussel-Dupré [8] examined the EMP produced 
by the prompt radiation from a nuclear explosion using two 
different approaches. One is based on a particle approach that 
starts with the Liénard-Wiechert potentials. In this case the 
synchrotron radiation generated by individual Compton 
electrons turning in an external or self-consistent magnetic 

. In 
both of the above reports, the authors performed these 
calculations to validate the formulation of the equations used 
in numerical calculations.  

 
1 Hereafter, line-of-sight will be abbreviated as LOS. 
2 The reader should not confuse the radial integral (a product of the 

original volume integral) of the current evaluated along the LOS in [7] as a 
line integral. That is, the radial integral does not imply that the EMP is due 
only to sources emitted only along the LOS.  
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field is summed coherently over the source region to yield an 
expression for the radiated electric field at the observer. The 
other approach adopts the high-frequency approximation and a 
fluid treatment for the electrons. In this case [8] is able to 
derive an expression for the EMP at the observer that is 
equivalent to previous work based on a solution of Maxwell’s 
equations (cf. [1]-[6]).  In the end, [8] demonstrates that these 
two very different approaches yield identical results under the 
same approximations3

The approach in this paper will be to compare the results of 
the electric field versus time given by a legacy EMP code 
called CHAP [4] with the field from the Jefimenko integral 
solution (1) of Maxwell’s equations [9], [10]. Note that the 
Jefimenko solution is exact and does not use the high-
frequency approximation. We consider a nuclear explosion at 
an altitude of 100 km and calculate the EMP electric field at 
an observer on the ground directly below. To make the 
comparison between CHAP and the integral solution 
meaningful the current density required for the integral 
solution is extracted from the CHAP calculation.  

.  

Solving the Jefimenko integral numerically provides several 
advantages over the analytical methods used by others. First, 
the volume of integration is easily modified so the effects of 
the spatial distribution of the source region could be studied 
very easily. Certain regions of the source region can be easily 
blocked off from the calculation. Second, the current source 
used in CHAP could be used in the integral solution to provide 
a meaningful comparison of the two calculations. The current 
source from CHAP is not a simple function and therefore 
cannot be integrated easily using analytical methods. Any 
modifications to the CHAP calculation, such as the air density 
or conduction current, are easily carried over to the integral 
solution via the current density. Third, the numerical method is 
very simple to understand and implement. It does not require 
using the high-frequency/outgoing wave approximation. This 
makes the results of the integral calculation easier to 
understand while providing a straightforward method for 
validating the high-frequency/outgoing wave approximation 
used in CHAP. Finally, the Jefimenko equation is an integral 
of the radiation from point-like source elements of volume dV. 
For some, this particle approach is physically more intuitive 
than the continuum approach such as the one used by 
Longmire [1]-[5] because the EMP pulse can be visualized as 
the superposition of electromagnetic waves from point-like 
sources which depend on the time-derivative of the current 
density. In previous work, the current density is used as a 
source for the EMP and is given by a complicated integral 
over retarded time [6], [8].   

Several simplifications to CHAP are implemented to help 
determine which factors control the time dependence of the 
EMP. The first simplification is to substitute the standard 

 
3 In [8], the use of the word coherent is not meant to imply that the EMP 

field is due to point-like sources along the line of sight. Instead, the radiation 
from point sources that make up the source region is coherent if the emission 
occurred before collisions disrupted the orbit of the Compton electron [12].  

atmosphere in CHAP with a constant air density slab with 
5 3

air 5 10  g/cmρ −= ×  between the altitudes of 20 and 30 km 
and zero everywhere else. The word slab is italicized because 
in CHAP spherical coordinates are used instead of Cartesian 
coordinates so the slab is really a section of a thick spherical 
shell. The second simplification is to reduce the effects of the 
conduction current density to a negligible level compared to 
the Compton electron current density. These two simplifying 
modifications lead to a source current density that has the same 
time dependence throughout the slab. A single function for the 
current density is then used in the Jefimenko equation and the 
resultant electric field is then normalized so that its peak value 
is equal to one. The CHAP electric field is also similarly 
normalized. The electric fields from both calculations are then 
compared to determine any differences in their behavior with 
respect to time.  

In a second calculation, the electric fields are calculated 
with the simplifications mentioned in the previous paragraph 
removed. The standard atmosphere is used and the conduction 
current is included. This time the un-normalized electric fields 
are compared to determine. This case is referred to as the 
standard case while the calculation with the simplifications is 
referred to as the simplified case. 

The electric field due to sources only along the LOS is also 
calculated in both cases. To calculate this field the Jefimenko 
equation (1) is used again but the volume integration is limited 
to elements strictly along the LOS. Then comparing the 
CHAP, Jefimenko, and LOS electric fields we can show the 
importance of the sources lying off LOS in the time-
development of the EMP.  

The goal in all of these field comparisons is to understand 
intuitively what factors are important in shaping the time-
dependence of the EMP electric field. Specific characteristics 
discussed here are the rise-time, which is defined as the time 
required for the electric field to change from 10% to 90% of 
the peak value of the electric field, the time of the peak, and 
the tail. Calculations that use a thin shelled source region and a 
modified current density are also presented to support this 
goal. As will be seen later on, the electrical field comparison 
will provide a strong confirmation of the high-
frequency/outgoing wave approximation.   

II. CALCULATING EMP WITH THE JEFIMENKO EQUATION 

The electric field ( ), t′E r  at some point ′r  and at time t  is 
given by the equation  
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where r  is the position of a source element of volume dV , 
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R ′= −r r  is the distance between the source element and the 

point of observation, the origin of ′r  and r  is the burst point 
in this case, /rt t R c= −  is the retarded time, ( ), rtρ r  is the 

charge density and ( ), rtJ r  is the current density. The dot 
above the source terms in the second and third terms in (1) 
indicate a derivative taken with respect to time t . Equation (1) 
is the Jefimenko integral solution to Maxwell’s equations. If 
the current component is perpendicular to the LOS then the 
third term in (1) yields electromagnetic radiation since the 
other terms give a vector component along the R̂  direction. 
Therefore, the first and second terms will be ignored and the 
third term in (1) will be referred to as the radiation term as 
long as the perpendicular component of ( ), rtJ r  is used. The 

following sections explain how to obtain ( ), rtJ r  from CHAP, 
describe the geometry of the source region, and outlines the 
used to numerically evaluate the third integrand in (1) at a 
retarded time.  

III. THE SOURCE TERM ( ), rtJ r  FOR THE SIMPLIFIED CASE 

The current density for (1) is taken from the CHAP 
calculation. The time variable in CHAP is not the same as the 
retarded time in (1) so a time-conversion is discussed first. 
Then the modifications, for the simplified case, that convert 
the standard atmosphere to a constant density air slab and 
neglect the conduction current are discussed. Some CHAP 
parameters common to the simplified and the standard case are 
the 100 km height of burst, vertical look angle, the dipole 
magnetic field strength, the 90 degree magnetic dip angle, and 
the mono-energetic 2 MeV gamma ray spectrum with the 
generic time dependence [11] shown in Fig. 3. 

A. The CHAP current density 
The CHAP current density is needed in (1) so that a 

meaningful comparison can be made between the electric field 
from the CHAP code and the Jefimenko equation. In CHAP, 
spherical coordinates are used and the burst point as the origin. 
The current density is calculated at several radii r  along the 
LOS between the burst point and the observer. The CHAP 
code has been set up so that the only current component in 
CHAP that yields an EMP electric field is the current Jθ , 

where θ̂  is perpendicular to the LOS. CHAP assumes that Jθ  
is independent of the azimuth θ  and zenith φ  because 
variations of these angles do not yield significant changes in 
the EMP electric field on the timescales of interest [4], [6]. 
Hence, the only explicit spatial coordinate dependence in the 
CHAP current density is the radius r  so that 

 
 ( )CHAP,J J r tθ θ= ,                                                        (2) 
 

where the time in CHAP is CHAPt .  

Note that (2) implies the CHAP current source has a 
spherical distribution despite being calculated only along the 
LOS. For example, the radius of the sphere is 75 kmr ≈ for a 
burst point of 100 km altitude and a source region between 20 
and 30 km. However, it will be shown later that only part of 
the spherical current distribution contributes to the EMP 
electric field within the first microsecond.   

B. The relationship between tCHAP and tr 
The relationship between the time CHAPt  and rt  is now 

given. In CHAP, the zero time, CHAP 0t = , corresponds to the 
moment that the gamma pulse arrives at a radiating source 
element irrespective of their position in r. This choice of 
reference point in time is convenient because it allows the 
superposition of signals generated at other radial points and 
also gives the time dependence of the EMP signal as seen by 
an observer on the ground where CHAP 0t =  also corresponds to 
the instant the ground observer begins recording the EMP. 
Therefore, choosing 0t =  to correspond with the time of the 
burst, the retarded time /rt t R c= −  can be calculated as a 
function of CHAPt , the radius r  of the source element and the 
distance R  between the source element and the ground 
observer with the equation 

 

 CHAPr
r R Rt t

c c
+

= + −                                                     (3) 

 
or simply, 

 

 CHAPr
rt t
c

= + .                                                                (4) 

 
 

The time /r c  in (3) is the time it takes the gamma pulse to 
reach the source element dV and R/c is the time it takes the 
electromagnetic signal from dV to reach the ground observer. 
Equation (4) can now be used to transform data from a 
function of CHAPt  to a function of rt . 

Note that from the definition of the retarded time a signal 
from a particular source element radiated at time CHAPt  after 
the arrival of the gamma pulse will reach the observer at time 

 

 CHAP
r Rt t

c
+

= +                                                             (5) 

 
where ( ) /r R c+  is the time it takes the gamma pulse to travel 
from the burst point to a source element plus the time it takes 
the EMP to travel from the source element to the observer.  

C. Simplifying the current density 
Modifications to CHAP that simplify the current density 

will now be described. These modifications are meant to 
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simplify the application of (1) by first separating the explicit 
dependence on r  in ( )CHAP,J r tθ  so that 

( ) ( ) ( )CHAP CHAP,J r t r J tθ θη= . It will then be argued in the 

next section that the function ( )rη  can be set equal to one 
without affecting what is being studied which is the time 
dependence of the EMP. Although these modifications are not 
necessary, removing the explicit r  dependence so that 

( )CHAPJ J tθ θ=  makes understanding the time dependence of 
the EMP much easier. 

The first step to removing the explicit radial dependence 
from the current density is to neglect the conduction current. 
Normally, the current density in CHAP is a combination of the 
Compton current and the electron conduction current. The 
conduction current is made up of air molecule electrons that 
have been ejected by the energetic Compton electrons. A 
single Compton electron contributes approximately 510  
electrons to form part of a plasma which the EMP must 
propagate through. The electric field of the EMP can 
accelerate these electrons to generate a conduction current that 
opposes the Compton current from continuously building up 
the EMP. At small radii, the EMP electric field is small so the 
conduction current is also small. At larger radii, however, the 
EMP electric field grows until the feedback from the 
conduction current limits the growth of the peak electric field. 
Therefore, by arbitrarily reducing the conduction current in 
CHAP to a value negligible compared to the Compton current 
the radial dependence due to the conduction current is also 
removed.  

The second modification to CHAP that will allow the 
separation of variables is to set the air density in the source 
region from 20 to 30 km to a constant value of 

5 -3
air 5 10  cmρ −= ×  and to zero everywhere else. Then only the 

source region is dense enough to interact with the gamma rays 
and manifest a Compton electron current4

Jθ

. The constant 
density source region forces  in CHAP to have practically 
the same time dependence at all radii. Therefore, the current 
density can then be written as 

  
 ( ) ( ) ( )CHAP CHAP,J r t r J tθ θη= .                                    (6) 
 

Note that the factor ( )rη  in (6) is proportional to the density 
of Compton electrons deposited at the radius r . 

 Fig. 2 shows the CHAP current density ( )CHAPJ tθ  taken 
at a radius that corresponds to one-fifth of a 2 MeV gamma 
mean-free-path in our constant density slab shaped 
atmosphere. The peak of the current density in Fig. 2 has been 
normalized to one because only the time dependence is of 
interest and because the normalization makes it easier to 
compare the time dependence of similarly normalized 
 

4 The mean-free-path of a 2 MeV gamma-ray  photon in this source region 
is 4.5 km. 

variables. Note again that the current density in CHAP 
( )CHAPJ tθ  can be related to ( )rJ tθ  by the use of (4). 

D. The time-derivative of the current density  
 As a result of (6), the time-derivative of the current density 

is given by  
 
 ( ) ( ) ( )CHAP CHAP,J r t r J tθ θη=  .                                    (7) 
 

Equation (7) together with (4) then gives 
 
 ( ) ( ) ( ), r rJ r t r J tθ θη=  .                                                (8) 
 

Note that the factor ( )rJ tθ
  can be normalized so that its peak 

value equals one provided ( )rη  is adjusted appropriately. 

Hereafter, the ( )rJ tθ
  used in the simplified case is assumed to 

be normalized in this fashion. 
Removing the r  dependence by setting ( ) 1rη =  in (8) is 

desirable because it simplifies the calculation of (1). To test 
whether this is possible we set 1η =  for all r and found no 
change in the time-dependence of Eθ . Moreover, various 

functions for ( )rη  have been tried but the time-dependence of 
the electric field remained the same and only the amplitude of 
the electric field changed by a constant factor. More will be 
said later but basically this means that the time-dependence of 
Eθ  is fully developed by signals from source elements within 
a thin spherical shell between r  and r dr+ . Each shell emits a 
combined signal shellEθ∆  with the same time-dependence. The 
superposition in retarded time of the electric field emitted by 
other shells produce an overall electric field Eθ  with the same 

time-dependence as shellEθ∆ . Therefore, since only the time-
dependence is of interest and because all the electric fields are 
eventually renormalized so that the peak value is equal to one, 
the value of η  is set to 1η =  for all r . Equation (8) can now 
be written as  

 
 ( )rJ J tθ θ=  .                                                              (9) 
 

Using (9) as the source for the radiation term in (1) then gives 
 

 ( ) ( )
2

0

1,
4

r

source

J t
E t dV

c R
θ

θ πε
′ ′= − ∫r


.                             (10) 

 
The vector notation for ground observer position ′r  in 

( ),E tθ ′r  is still retained in (10) since the parameters used to 
calculate the current density depend on the LOS between the 
observer and the burst.  

In Fig. 3, a plot of Jθ
  is given as a function of CHAPt  which 
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is used in calculations of the electric field Eθ  for the 
simplified case provided (4) is used to give the appropriate 
retarded time. In Fig. 3, Jθ

  has been renormalized so that its 

peak value is , max 1Jθ = . The value , maxJ Jθ θ=   occurs at time 

CHAP 17 nst =  which nearly coincides with the peak of the 

normalized gamma flux ( )CHAPtγ  from the burst which is also 

shown in Fig. 3. Fig. 3 shows that Jθ
  and γ  have 

approximately a rise-time of 5 nanoseconds. Here the rise-time 
is defined as the time a variable changes from 10% to 90% of 
its maximum value. The advantage of normalizing the 
variables may be seen in Fig. 3 which shows that the rise-times 
of Jθ

  and γ  are basically the same. This result is expected 
since the current density is only due to the Compton electrons.  

To summarize, for the simplified case the conduction 
current in CHAP is artificially reduced to a negligible value 
and a constant air density slab for the atmosphere is used to 
simplify the physics to reduce (1) to (10). The time-derivative 
of the current density ( )rJ tθ

  given in Fig. 3 is then used for 
all the radiating source elements in (10). Renormalizing all the 
electric fields so that the peak value equals one makes it 
simpler to compare their time-dependence. These 
modifications make the physics that affects the EMP time-
dependence, especially the effect of a spatially distributed 
source, easier to understand. Furthermore, (10) is simple to 
evaluate numerically. These modifications are by no means 
necessary as will be shown later when the Jefimenko equation 
is used to recreate a CHAP solution without modifications to 
the conduction current of the air density.     

IV. EVALUATION OF THE RETARDED INTEGRAL 
To evaluate (10) numerically the arrival time of the 

radiation from a single source element to the observer is 
needed. A source element that is a distance r  from the burst 
point will begin radiating once the gamma pulse reaches it at 
time /r c  after the burst (see Fig. 4). The wavefront of the 
pulse from the source element will then reach an observer that 
is a distance R  away from the source element in a time /R c . 
Thus the arrival time is ( ) /r R c+ . An observer at a distance 

obsL  away from the burst will first receive an EMP signal after 
a time obs /L c  after the burst. It is convenient to reset the time 
of the burst to occur at standard time obs /t L c= −  so that the 
observer measures the arrival of the EMP electric field at 

obs 0t = . The relationship between the standard time t  and the 
observer time obst  is therefore 

 

 obs
obs

L
t t

c
= − .                                                              (11) 

 
Note that the radiation from source elements lying along the 

LOS all have the same arrival time of obs 0t =  since they all 
have obsr R L+ = .  

 The retarded integral equation (10) can now be evaluated 
numerically to give the electric field ( )obsE tθ  at the observer. 

An array for ( )obsE tθ  is divided up into bins that correspond 

to a particular time obst . The value in each bin is the 
cumulative electric field amplitude of signals from many 
source elements. The time step obst∆  of the bins is small 
enough to resolve the radiated signal from a single source 
element. Therefore, the radiation from a single source element 
that arrives at the observer will fill the bins of ( )obsE tθ  from  

obs ( ) /t r R c= +  to obs CHAP ( ) /t T r R c= + +  , where CHAPT  is 
the maximum value of CHAPt , by an amount corresponding to 
the amplitude of the signal at time obst . The amplitude may be 
positive or negative. A sufficient number of bins are used to 
cover a range in time comparable to the pulse length ( )obsE tθ  
given by CHAP.  

V. THE VOLUME OF INTEGRATION 
The geometrical relationship between the burst point, source 

region and the observer used in our calculations is shown in 
Fig. 4. Here, the distance between the burst point and the 
observer is obs 100 kmL = . Again, the line-of-sight is a vertical 
line that connects the burst point and the observer. For the 
simplified case, the source region has the shape of a spherical 
cap with an inner radius of inner 70 kmr = , outer radius of 

outer 80 kmr =  measured from the burst point, a half-angle span 
of max / 40θ π=  measured around the burst point, and 
azimuthal symmetry.  

For the standard case, the inner and outer radii are 
determined by CHAP: inner 40 kmr = and outer 82 kmr = . The 
maximum angle used for the integral in (1) is max / 20θ π= . 

 For both cases, the source region is divided into hoop 
shaped cells (source elements) with the dimensions r∆  and 
r θ∆  (see Fig. 4). Both dimensions are approximately the 
speed of light times a one-fifth of the time it takes ( )CHAPJ tθ

  
in Fig. 3 to rise from 10% to 90% of its peak value which is 
approximately 5 nanoseconds. These dimensions ensure that 
the emitted radiation from many neighboring cells can 
destructively or constructively interfere with each other. Cell 
partitions were not created along the azimuthal direction φ̂  
because these cells would have the same arrival time due to 
axial symmetry.  

VI. CAUSALITY ELLIPSOID AND VECTOR ADDITION OF THE 
ELECTRIC FIELDS 

The rise and fall of the EMP electric field usually occurs 
within the first 610  s−  after the time the ground observer 
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begins receiving the EMP. The source elements that contribute 
to the EMP during this time are contained within a narrow 
ellipsoidal region with the burst point and the observer point at 
the foci (see [7] and Fig. 1). If the observer and burst point are 
a 100 km apart, the length of the major and minor axes of the 
ellipsoid are 100.3 km and 3.88 km, respectively. The distance 
dS between the LOS and a source element lying on the 
ellipsoid’s surface at a radius of 75 km from the burst point is 

 
 3.36 kmSd = .                                                              (12) 

 
The angle α  between the LOS and the line from the observer 
to a cell on the ellipsoid’s surface (see Fig. 1) can then be 
calculated. For the latter cell with 3.36 kmSd =  the angle is 

7.65 degreesα = which gives  
 
 ( )cos 0.991S SE E Eα⊥ = =                                        (13) 
  

where SE  is the peak electric field amplitude from a source 
element and E⊥  is the component of SE   perpendicular to the 
LOS between the burst and the observer. The difference 
between ( )cos 0.991α =  and 1 is small enough that difference 

in the alignment of the Jθ
  vector from element to element can 

be neglected when calculating EMP signals up to 610  s−  in 
duration. Therefore the same function for Jθ

  is used for all the 
source elements in (10) regardless of their alignment 
differences.  

 As another example, consider the ellipsoid that 
corresponds to arrival times within the first 810  s− . The source 
element lying on the ellipsoid’s surface and at a radius of 75 
km from the burst point has a dS = 0.335 km and 

( )cos 0.999α = . 

VII. RESULTS AND DISCUSSION 
The electric fields calculated using either the Jefimenko 

equation (10) or CHAP are now compared. Two cases are 
considered. The first set of comparisons will be for the 
simplifications to the CHAP calculation and the second set of 
comparisons will be for the standard case which accounts for 
the conduction current and the standard atmosphere. For 
convenience, the subscript θ  is dropped from all the variable 
names from here on.  

A. Comparison of the CHAP and Jefimenko electric fields 
for the simplified case 
The CHAP electric field ( )CHAP obsE t  is now compared to 

the electric field ( )JEF obsE t  calculated with (10). To determine 
how the spatial distribution of the source region affects the 
rise-time of the EMP two different regions of integration are 
used in the calculation of the electric field ( )JEF obsE t . The first 

region is the same as that described in section V and we call 
the electric field from this source JEFE . The second region is 
limited only to source elements lying on the LOS. The size of 
these elements is the same as those described in section V. 
Therefore this second source region is 10 km long and 
approximately 6 cm wide. The electric field calculated from 
this source is called LOSE .  

Displayed in Fig. 5 are the electric fields ( )CHAP obsE t , 

( )JEF obsE t , and ( )LOS obsE t . Each the curve has been 
normalized so that the peak amplitude is equal to one. 
Comparing the electric field LOSE  with Jθ

  from Fig. 3 shows 
that they both have the same time-dependence. This is because 
in (10) the signal from a source element is  

 

 2
0

1
4

JdE dV
c Rπε

=


                                                      (14) 

 
and because the source elements along the LOS all have the 
same arrival time ( ) obs/ /r R c L c+ = . Therefore LOSE  has the 

same time dependence as dE  which in turn is directly 
proportional to J . In contrast, the electric fields ( )JEF obsE t  

and ( )CHAP obsE t  clearly have the same time-dependence 

despite their different calculation methods. Neither ( )JEF obsE t  

or ( )CHAP obsE t  have the same time dependence as ( )LOS obsE t . 
The fact that the Jefimenko equation explicitly accounts for the 
three dimensional shape of the spherically symmetric current 
density source plus the fact that the electric fields ( )JEF obsE t  

and ( )CHAP obsE t  have the same time-dependence implies that 
the CHAP method must also account for the signals from 
source elements off the LOS. As we have discussed in section 
VI these off-LOS contributions can come from source 
elements up to a distance 0.335 kmSd =  from the LOS for 

times 8
obs 10  st −≤ . For arrival times between 

8 7
obs10  s 10  st− −< <  the distance is between 

0.335 km 1.06 kmSd< < . Similarly, for arrival times between 
7 6

obs10  s 10  st− −< <  the distance is between 
1.06 km 3.36 kmSd< < . How these signals superpose in time 
to form the rise-time, peak and the tail of the EMP is the 
subject of the next section. A simple example is worked out in 
the appendix. 

B. The time dependence of ECHAP in the simplified case 
In Fig. 5, the rise-time of ( )CHAP obsE t  is approximately 8.4 

ns. The peak of CHAPE  occurs at obs 24.4 nst = . After peaking, 
it takes approximately 179 ns for CHAPE  to decrease to 10% of 
the maximum value.  On the other hand the rise-time of the 
signal JEFdE  from a single source element is 5 ns. After the 



7 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
peak, the signal JEFdE  quickly drops to zero 25 ns after this 
signal began. According to the ground observer, the signals 
from source elements on the LOS arrive at the time obs 0t = .  
A moment later, signals from just off the LOS arrive while 
signals on the LOS are still being transmitted to the observer. 
As more signals arrive the electric field CHAPE  continues to 
rise until obs 25 nst = . At this time, the observer “sees” the 
signal from source elements on the LOS change from a 
positive to a negative value and so the electric field CHAPE  
peaks at this moment and begins to decrease.  Note that the 
time of the crossover (i.e. obs 25 nst = ) only determines when 
the peak occurs and not the magnitude of the EMP.   

In Fig. 5, CHAPE  approaches zero as obst  approaches1 sµ . 
At this time, the rate of positive valued signals reaching the 
observer nearly equals the rate of negative valued signals. This 
is a consequence of the integral of JEFdE  over all time being 
equal to zero or equivalently 

 

 ( )CHAP CHAP
0

d 0J t t
∞

=∫  .                                                  (15)    

 
To emphasize the importance of the negative value of J  the 
electric field +

JEFE  is calculated with (10) using a source 

J + that has 0J + ≥  at all obst . The source J +  is basically the 

same as J  in Fig. 3 except the negative values of J  are 
converted to zero. The result +

JEFE  is shown in Fig. 6 as a 

function of obst . Here, +
JEFE  develops a plateau rather than a 

peak. The plateau is due to the constant rate of positive valued 
signals reaching the observer. Eventually, +

JEFE  drops to zero 

at 6
obs 10  st −=  because there are not enough source elements 

in our problem that begin to radiate beyond this time. 
Therefore, without the negative part of J  the EMP electric 
field develops into a long flat pulse instead of the tail found in 
the electric field CHAPE .  

C. The time dependence of EJEF due to a thin spherical shell 
source for the simplified case 
To explore the importance of the off-axis contributions to 

EMP even further, (10) is used to calculate the electric field 
( )thin obsE t  due to a thin shelled source with a radial thickness 

of 0.5 mr∆ = . The field thinE  is compared to the electric field 

( )thick obsE t  due to a thick shelled source region with a radial 

thickness of 10 kmr∆ = . Both electric field calculations are 
made with the same J  given in Fig. 3. Hence, ( )thick obsE t  is 

the same as ( )JEF obsE t  from Fig. 4. Fig. 7 shows the 

normalized electric fields ( )thin obsE t  and ( )thick obsE t  with 
exactly the same time dependence. This result holds no matter 

what thickness or radius is used for the thin shelled source. 
Moreover, the time dependence of thinE  is the same as the 

current density J  shown in Fig. 2. The proportionality 
between thinE  and J  is predicted by the equation for the EMP 
electric field under the high-frequency approximation 
(equation (52) in [6]; equation (9) in [7] and equation (17) in 
[8]). When the secondary electrons are not included this 
equation is   

 

( ) ( ) ( )
0

, 2 / ,
r

E cr dr r Jτ π τ′ ′ ′= − ∫r r .                                (16) 

 
For a thin shelled source (16) gives 
 

( ) ( ) ( ), 2 / ,E cr J r rτ π τ′ ′ ′∆ = − ∆r r                                 (17) 
 

where r and r′   are the radius of the observer and shell source 
from the burst point, respectively. Equating thinE  to E∆  in 
(17) therefore implies that the current density term on the right 
hand side of (17), which is evaluated along the LOS as shown 
by [7], accounts for all the point-like source elements, which 
emit an electric field proportional to J , in the thin shell.        

 

D. Comparison of the CHAP and Jefimenko electric fields 
for the standard case  
In the standard CHAP simulation the standard atmospheric 

density is used and the effects of the conduction current are 
included. The conduction current consists of secondary 
electrons produced via the ionization of air molecules by 
Compton electrons. In the presence of an electric field the 
secondary electrons tend to short out the EMP electric field. 
This implies that the conduction current opposes the Compton 
current. However, the cancellation does not occur immediately 
because it requires time for the Compton electrons to lose most 
of their kinetic energy to ionization. The magnitude of the 
conduction current, Jσ , depends on the density of the 
secondary electrons and the strength of the EMP electric field 
and is given by the J Eσ σ= , where σ  is the conductivity. 
Within the source region the air density is sufficiently high to 
make ionization via Compton electrons frequent enough that in 
a short time after CHAP 0t =  the conduction current can become 
large enough to limit the growth of the electric field by the 
Compton current. The electric field is then said to be saturated 
and is given by peak /CE J σ= − , where peakE  and CJ  are the 
theta component of the EMP electric field and the Compton 
current, respectively [2].  

For the integral solution approach (10) the source of the 
EMP electric field is the time derivative of the total current 
density which is given by  

 
 total CJ J Jσ= +   .                                                          (18) 
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As before, the variables in (18) are the vector component 

perpendicular to the LOS. Since the standard atmosphere is 
used the source region is not the same as that defined in 
section V. Hence, the total current density is now a function of 
radius r  as well as the retarded time rt . To calculate the 

electric field total
JEFE  the third term in (1) is used so that  

 

 ( ) ( )totaltotal
JEF 2

0

,1,
4

r

source

J r t
E t dV

c Rπε
′ = − ∫r


.                  (19) 

 
The source ( )total , rJ r t  is given by the CHAP simulation. 

However, many radial points in the CHAP simulation are 
necessary to ensure that the total current changes slowly from 
point to point otherwise odd results occur in the application of 
(19). All parameters for the CHAP calculation are the same as 
the simplified case such as the height of burst, the magnetic 
field strength, the 2 MeV mono-energetic gamma ray spectrum 
and the vertical LOS.  

 The electric field total
LOSE  due to just the LOS source 

elements is also calculated with (19) using the same source 
( )total , rJ r t  obtained from the CHAP calculation.  

As before, the normalized electric fields total
CHAPE , total

JEFE  and 
total
LOSE  versus time are plotted in Fig. 8 but for the standard 

case. As in the case of the constant density air slab and zero 
conduction current, the electric field total

JEFE  overlaps the field 

given by CHAP total
CHAPE . The electric field total

LOSE , however, is 

still unlike the CHAP solution total
CHAPE  and demonstrates that 

the CHAP electric field is not a simple coherent superposition 
of signals emitted along the LOS even when the conduction 
current is included. Instead, the electric field given by CHAP 
must include emissions from a spatial distribution of sources 
that are not on the LOS in order to construct the time behavior 
of the EMP electric field from 6

obs 0 to 10  st −= . Moreover, 
the ratio of the peak value of the non-normalized CHAP 
electric field (which is not shown but it is approximately 30 
kV/m) to the non-normalized peak electric field calculated 
using (19) for the full source region is 0.983. In other words 
not only can (19) recreate the time-dependence of the CHAP 
EMP electric field but it can also duplicate the magnitude of 
the EMP electric field. Although the magnitude of the EMP 
electric field is determined by the strength of the Compton and 
conduction currents, the time of the peak is determined by a 
mechanism similar to that in the simplified case. 

The construction of the time behavior of the EMP electric 
field total

CHAPE in the standard case, however, is more complicated 

than in the simplified case because here the source ( )total , rJ r t  
does not have the same time-dependence at all radii r . 
However, the principles learned from that case apply here as 

well because the Jefimenko integral solution treats all current 
sources equally. Fig. 9 shows the EMP electric field using (19) 
but the region of integration is restricted to sources within an 
ellipsoid of causality of some size. As in section VI, the foci of 
the ellipsoids are the burst point and the ground observer. The 
size of the ellipsoids is indicated on Fig. 9 by a time next to 
each solid line curve. The time is given by ( ) /r R c+  where r  
is the distance from the burst point to any source element on 
the surface of the ellipsoid and R  is the distance from that 
same source element to the ground observer. Basically, the 
larger times correspond to larger ellipsoids. For example, in 
section VI.A, we showed that 0.335 kmSd =  for 

( ) 8/ 10  sr R c −+ =  and 1.06 kmSd =  for ( ) 7/ 10  sr R c −+ = . 

Within the time interval ( )obs0 /t r R c≤ ≤ +  measured by the 
ground observer, the initial part of the signal from each source 
element within the ( ) /r R c+  ellipsoid should have reached 
the observer. However, the radiation from each element may 
still radiate out in time beyond ( ) /r R c+ . The curve total

CHAPE  is 
also included in Fig. 9 as a dashed line as a reference. All the 
curves in Fig. 9 have been normalized by the same number 
used to make the peak of total

CHAPE  equal to one.  
In Fig. 9, the electric field pulse from the region enclosed by 

the 910 s−  ellipsoid is small compared to total
CHAPE . The total 

energy of the electric field pulse from the 910 s−  ellipsoid is 

only 0.3% of the total for total
CHAPE . A source element on the 

910 s−  ellipsoid that is at an altitude of 30 km is 113 m away 
from the LOS. For this ellipsoid the source elements are 
relatively close to the LOS so the electric field will more 
closely resemble the coherent superposition of signals along 
the LOS. A delay of 910 s−  does little to change the coherent 

superposition of the signals because the source ( )total , rJ r t  

increases only to approximately 15% of its peak value 810 s−  
after the arrival of a gamma pulse. Therefore, the time-
dependence of the electric field given by the 910 s−  ellipsoid is 

approximately that of total
LOSE , which is the weighted average of 

the sources ( )total , rJ r t  along the LOS in Fig. 8.  

To obtain the initial rise and peak of total
CHAPE  with (19) 

requires integrating over at least the source region within the 
81.8 10 s−×  ellipsoid because the peak of total

CHAPE  occurs at 
8

obs 1.8 10 st −= × . As in the simplified case, the peak of total
CHAPE  

occurs when the radiation from elements first reaching the 
observer begin to change sign due to the source ( )total , rJ r t  
changing sign. The change in sign for the weighted average of 

( )total , rJ r t  along the LOS (i.e. total
LOSE ) occurs at time 

8
obs 1.8 10 st −= ×  when electric field for the 910 s−  ellipsoid 

crosses from positive to negative.  
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From Fig. 9, it seems that integrating (19) over the 
81.8 10 s−×  ellipsoid gives an electric field that matches total

CHAPE  

very well up to approximately 82.8 10 s−× or about 810 s−  after 

the peak. This is because the source ( )total , rJ r t  approximately 

zero until about 810 s−  after the gamma pulse reaches the 

source element. If the source ( )total , rJ r t  had changed sooner, 
then the apparent agreement would not have reached as far as 

8
obs 2.8 10 st −= × . 

To recreate the tail of the EMP electric field sources further 
away from the LOS are need. Fig. 9 shows that integrating (19) 
over sources within the 85 10 s−×  ellipsoid can recreate total

CHAPE  

up to time 8
obs 5 10 st −= ×  very well. The signals from these 

source elements are obviously not in phase with the signals 
emitted along the LOS because of the length of the tail of 

total
CHAPE  in comparison to the positive portion of ( )total , rJ r t . A 

source element on the 85 10 s−×  ellipsoid that is also at an 
altitude of 30 km is 793 m away from the LOS.  

Finally, in Fig. 9 (see also Fig. 10), a negative pulse 
develops at late times in the Jefimenko integral calculations. 
This pulse has an absolute amplitude and time-dependence 
similar to the early time positive pulse. In Fig. 5 and 8 the 
negative pulse is not shown on JEFE  or total

JEFE  because the large 
ellipsoid of causality used in the calculations pushed the mirror 
pulse beyond a microsecond and outside the time range of the 
plot. Again, the simple example shown in the Appendix can 
explain how the negative pulse is built. Fig. 10 shows the 
negative pulse in curve A is given by the superposition of the 
negative portions of the late time sinusoids. Since all the 
sinusoids have the same constant amplitude, symmetry forces 
the positive and negative pulses on the curve A to have equal 
absolute magnitudes and the same time-dependence. In reality, 
however, the situation is not as simple as the example shown in 
Fig. 10. Several factors, such as the variation of the air density 
with altitude, distance from the observer, attenuation by 
secondary electrons, vector cancellation as discussed in section 
VI, can influence the contribution of the source elements as 
they move further away from the LOS. Measurements done 
during high-altitude nuclear test done in the past also do not 
reveal such a signal. To this author it seems more likely that 
the amplitude of the signals from sources very far away 
decreases with distance. In Fig. 11 one hundred single cycle 
sinusoids staggered in time are superposed but now their 
amplitudes vary as a function of time. The signals that arrive at 
late times correspond to signals from very far away and their 
amplitudes have been artificially reduced to reflect what might 
happen if the signals do decrease in strength as their distance 
from the LOS increases. As a result, Fig. 11 shows that at late 
times the amplitude of the sinusoids is so small that a negative 
pulse with amplitude comparable to the positive pulse cannot 
be produced.  

 

E. Validity of the high-frequency or out-going wave 
approximations 
The Jefimenko equation (1) is an exact solution of 

Maxwell’s equations. In our numerical calculations of (10) or 
(19) the high-frequency/outgoing wave approximation is never 
used. The time-derivative of the current density is borrowed 
from CHAP but this quantity is not affected by the 
approximation. The CHAP formulation, however, utilizes the 
outgoing wave approximation in its calculation of the electric 
field. Therefore, the overlap of the electric fields by the two 
calculations shown in Figs. 5 and 8 is a strong validation of the 
high-frequency/outgoing wave approximation.  A more 
detailed analysis can be done by calculating the value of Rχ  
as defined in [8] and then determining the path-length delay 
for a source element with this value.  

 The distance Rχ  is approximately the distance from the 
LOS beyond which the Compton electrons no longer emit 
radiation that is coherent with those along the LOS and was 
used in [8] to calculate the volume of the source region that 
emitted radiation that reached the observer at the same time. 
The radius R  is measured between the ground observer and 
the surface intersecting the source region that is radiating at 
the same retarded time. The angle χ  is measured from the 
LOS and around the ground observer’s position and is given 
by 22 /r r Rχ ′≈ ∆ . The radius r′  is measured from the burst 
point to the radiating source and the maximum value of r∆  is 
given by ( )max 1 / Er c β ν∆ = −  (from Fig. 1. of [8]). For a burst 
at 100 km altitude and a source region altitude of 25 km  leads 
to the value of r = 75 km and R = 25 km. A value of 

max 7.4 mr∆ = for 1 MeV electrons at an altitude of 25 km is 
calculated from max 0.24 mr∆ = at sea level used in [8] by 
multiplying it by the ratio of the densities at sea level and at 25 
km altitude. Consequently, the value of Rχ  is 1.05 km. A 
source at this distance from the LOS would have an arrival 
time of 710  s− . From Fig. 5 and 8 it is apparent that most if not 
all of the pulse is obtained before this time is reached. This 
justifies the volume of integration used in the analytical 
calculations of [8] for the EMP electric field under the particle 
approach which is the same as the equation obtained under the 
high-frequency approximation.  

VIII. CONCLUDING REMARKS 
In this paper, the EMP electric field is calculated from the 

Jefimenko integral which basically superposes the radiation 
from point-like source elements within a volume. These results 
indicate that the EMP electric field is not a simple 
superposition of signals from sources along the line-of-sight. 
Instead, the time dependence of the EMP electric field is built 
by contributions from sources off the line-of-sight whose 
signals do not reach the ground observer at the same time as 
those along the LOS due to path length differences. Sources at 
least 3.36 km away from the line-of-sight needed to be 
included in the Jefimenko equation to reproduce the CHAP 
EMP electric field up to a microsecond.  
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In the simplified case the signal from each source had the 
same time dependence as the time derivative of the current 
density ( )rJ t  which has a positive pulse initially followed by 
a negative pulse. It was shown that the rise-time of the EMP 
electric field is due to the superposition of the positive pulses 
from the sources. Eventually the first negative pulses reach the 
observer and at that point the EMP electric field reaches its 
peak value. The EMP electric field in the tail is the summation 
of negative and positive contributions from many current 
source elements rather than the slow decay of the source.  

In the standard case, although the time-derivative of the 
current density ( )total , rJ r t  is more complicated because of the 
explicit dependence on radius r , the build-up of time 
dependence of the electric field is qualitatively the same as 
that in the simplified case.  Moreover, the principles developed 
in this paper are not limited to burst heights of 100 km and 
should apply to other physical conditions as well. 

The electric field from the Jefimenko equation, which does 
not utilize the high-frequency or the outgoing wave 
approximation, was found to overlap the electric field 
calculated with CHAP. This implies that the high-
frequency/outgoing wave approximation, which is used in the 
CHAP formulation, is valid. 

APPENDIX 
As a simple example to demonstrate the difference in rise-

times between ( )JEF obsE t  and ( )LOS obsE t , we add the 

amplitudes from ten sinusoids each only one period sinT  long 

in time. Each sinusoid represents the radiation JEFdE  from a 
different source element arriving at the observer at different 
times. Thus the -thn sinusoid is added to the resultant 
beginning at time ( ) sin1 /10n Tτ = − . The resultant ( )A τ  is the 

sum of all the sinusoids and is meant to simulate ( )JEF obsE t . 

The sum of the sinusoids ( )A τ  is shown in Fig. 10 as a thick 
dashed line. This dashed line clearly has a time dependence 
different from each of the sinusoids just as ( )JEF obsE t  has a 

time dependence different from ( )JEF obsdE t . The curve ( )A τ  
in Fig. 10 continues to rise until the negative amplitude from 
the first sinusoid begins cancelling the positive contributions 
from the 1n >  sinusoids. Eventually, ( ) 0A τ =  when 90τ =  
since there are equal contributions from positive and negative 
amplitudes. This is similar to what happens in Fig. 5 where the 
zero of ( )LOS obsE t  for the LOS elements occurs at the same 

time as the peak of ( )JEF obsE t . After ( )JEF obsE t  peaks it begins 
to decrease because of negative contributions radiated from 
some of the source elements arrive at the observer and cancel 
the positive contributions from other source elements.  

 In reality, a negative electric field pulse is not expected as 
in the curve ( )A τ . The signals from sources very far away 

have very late arrival times ( )6
obs 10t s−>>  and should 

therefore have little effect on the field at the observer due to 
air density variation with altitude, attenuation by secondary 
electrons, attenuation due to distance, and vector cancellation 
of the fields as discussed in section 6. Fig. 11 shows what 
happens when one hundred single cycle sinusoids staggered in 
time and with the amplitude ( )exp /100τ τ−  are added. As 

expected the late time negative pulse in the curve ( )A τ  
disappears because the amplitude of the late time sinusoids 
goes to zero.   

ACKNOWLEDGMENT 
The author thanks David Simons, Hans Kruger, Robert 

Roussel-Dupré, Tom Thomson, Lynn Shaeffer, and Brian 
Yang for their helpful comments, guidance and 
encouragement. 

REFERENCES 
[1] C. L. Longmire, “Close In E. M. Effects Lectures X and XI”, Los 

Alamos Scientific Lab, Los Alamos, NM, LAMS-3073, April 1964, 
unpublished. 

[2] C. L. Longmire, IEEE Transactions on Electromagnetic Compatibility, 
vol. EMC-20, no. 1, p. 3, 1978. 

[3] C. L. Longmire and H. J. Longley, “Improvements in the Treatment of 
Compton Current and Air Conductivity in EMP Problems”, Defense 
Nuclear Agency, Report DNA-3192T, October 1971. 

[4] H. J. Longley and C. L. Longmire, “Development of the CHAP EMP 
Code”, Defense Nuclear Agency, Report DNA-3150T, January 1972, 
unpublished. 

[5] C. L. Longmire, “Justification and Verification of High-Altitude EMP 
Theory – Part I”, Lawrence Livermore National Laboratory, Livermore, 
CA, UCRL-15938, August 1987. 

[6] W. J. Karzas and R. Latter, Phys. Rev. vol. 137, p. B1369, 1965. 
[7] W. A. Radasky, W. J. Karzas, C. W. Jones and G. K. Schlegel, “High-

Altitude Electromagnetic Pulse – Theory and Calculations”, Metatech 
Corporation, Goleta, CA, DNA-TR-88-123, October 1988.  

[8] R. A. Roussel-Dupré, IEEE Transactions on Electromagnetic 
Compatibility, vol. EMC-47, no.3, p.552, 2005. 

[9] O. D. Jefimenko, Electricity and Magnetism, Electret Scientific, Star 
City, WV, 1989. 

[10] J. D. Jackson, Classical Electrodynamics, Wiley, 1998, p. 246. 
[11] S. Glasstone and P. J. Dolan, The Effects of Nuclear Weapons, United 

States Department of Defense and the United States Department of 
Energy, 3rd edition, 1977, p. 328.  

[12] Private communication with R. A. Roussel-Dupré, 2009. 
 
 
 
Chester D. Eng received the Ph.D. degree in physics from the University of 
Illinois at Urbana-Champaign in 2002.   
 For his graduate thesis he investigated the role of MHD waves in the early 
formation of stars via computer simulation. As a postdoctoral researcher 
(2002-2006) at Lawrence Livermore National Laboratory, Livermore, CA he 
examined the application of radar to lightning propagation and analyzed the 
physics of nuclear EMP generation. As a physicist at Lawrence Livermore 
National Laboratory (2006-present) he continued his work on EMP and also 
studied the effects of high-altitude nuclear explosions using computer 
simulations.  
 
 
 
                                           



11 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

                 

Fig. 1.  Geometry of the constant density ( )5
air 5 10 g/ccρ −= ×  

source region with respect to the causality ellipsoid. The foci 
of the ellipsoid are the burst point and the observer. The 
ellipsoid is drawn such that ( ) 8/ 10 sr R c −+ = . The distance 
from the line-of-sight of the point on the ellipsoid that is also 
at an altitude of 25 km is 335 m. The source region extends 
beyond the ellipsoid and lies between 70kmr =  
and 80kmr = . 

 

 
Fig. 2.  A plot of the Compton current density CJ  versus time 

CHAPt  given by the CHAP code for the case of constant density 
air slab and negligible conduction current. 
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Fig. 3.  The dotted line is a plot of the time derivative of the 
Compton current density ( )CHAPCJ t  versus CHAPt  for the case 
of constant density air slab and negligible conduction current. 
The dash-dot line is a plot of the gamma-ray flux versus CHAPt  
used in the simplified and the standard cases. The time 
dependence of the gamma-ray flux is obtained from Glasstone 
and Dolan’s book [11]. 
 

             

Fig. 4.  The ( ),r θ  grid for the Jefimenko equation volume 
integration. The full region of integration is axially symmetric 
around the line-of-sight connecting the burst point and the 
ground observer. The volume of each hoop shaped cell is 

22 sindV r d drπ θ θ= . For the simplified case, the region’s 
inner radius is 70kmr = and the outer radius is 80kmr = . 
The maximum angular position is max /100θ π= . For the 
standard case, the radius of the region of integration is 
determined by the CHAP simulation. The maximum angular 
position in the standard case is max / 40θ π= .    
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Fig. 5.  Comparison of electric fields calculated with 
CHAP, CHAPE  (solid line), the Jefimenko equation, JEFE  
(dashed line), and the Jefimenko equation for elements only 
along the line-of-sight, LOSE  (dash-dot line), versus observer 
time obst  for the simplified case where the standard 
atmosphere is replaced by a constant density air slab and the 
conduction current is neglected. Each electric field has been 
normalized so that their peak value is one. Only the Jefimenko 
solution JEFE  has the same time-dependence as the CHAP 
electric field CHAPE . This comparison shows that the CHAP 
electric field is not a superposition of signals along the LOS.    

 
Fig. 6.  Normalized electric field JEFE+ versus observer time obst  

calculated using only the 0CJ >  part from Fig. 3 as the source 
in the Jefimenko equation. The long pulse width and flattened 
top is due to the constant rate of arrival signals of the same 
sign at the ground observer. 
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Fig. 7.  Comparison of the normalized electric field from a thin 
shell (solid line) and a thick shell (dashed line) such as CHAPE  
from Fig. 5 for the simplified case. Both calculations used the 
Jefimenko equation and the same source CJ . The thickness of 
the thin shell is 0.5mr∆ = . The thickness of the thick shell 
is 10kmr∆ = . The overlap of the two curves suggests the 
spherical curvature of the source is important in establishing 
the time-dependence of the EMP electric field.   

 
Fig. 8.  Comparison of electric fields calculated with 
CHAP, CHAPE  (solid line), the Jefimenko equation, JEFE  
(dashed line), and the Jefimenko equation applied to elements 
along the line-of-sight, LOSE  (dash-dot line), versus observer 
time obst  for the standard case. Each curve has been 
normalized so that their peak value is one. Again, only the 
Jefimenko solution JEFE  has the same time-dependence as the 
CHAP electric field CHAPE .  
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Fig. 9.  Comparison of the CHAP electric field CHAPE  (dashed 
line) for the standard case with the electric field from seven 
different calculations using the Jefimenko equation (solid 
lines). Each of the solid lines is marked with a number given 
by ( ) /r R c+  (see Fig. 1) which corresponds to the size of the 
ellipsoid of causality. As the size numbers increase the size of 
the source region integrated in the Jefimenko equation also 
increases. Notice that the solution given by the Jefimenko 
equation matches the CHAP solution CHAPE  as larger sizes are 
used. The development of the large negative pulse is not real 
since they occur at times greater than the size number. 

 
Fig. 10.  ( )A τ  (dashed line) is the summation of ten single 
cycle sinusoids (solid lines) that begin at intervals of 1/10 of a 
period from one another. Notice that the time-dependence of 
the resultant ( )A τ  is not the same as the sinusoids. The curve 
A peaks at the point when the negative part of sinusoid 1 
becomes negative. Afterwards the curve A decreases due to 
more negative contributions from the sinusoids. The curve A is 
then zero from τ = 90-100 because of cancellation The time 
development of the EMP electric field is similar to this toy 
model except the resultant is the EMP electric field and instead 
of summing sinusoids we sum signals proportional to J  with 

arrival times given by the path length ( ) /r R c+  (see Fig. 1).   
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Fig. 11.  ( )A τ  (dashed line) is the summation of one hundred 

single cycle sinusoids with amplitude ( )exp /100τ τ−  that 
begin at intervals of 1/10 of a period from one another. The 
late time negative pulse in the curve  that showed up in Fig. 10 
is not present because the amplitude of the late time sinusoids 
goes to zero. The decay of the amplitude of the sinusoids is 
more realistic than the constant amplitude shown in Fig. 10.    
 


